67 research outputs found

    ANALYSIS OF KINEMATIC FOR LEGS OF A HEXAPOD USING DENAVIT-HARTENBERG CONVENTION

    Get PDF
    The headway of manipulator robots makes the development of a hexapod quite fast. Unfortunately, a hexapod is unstable to moving in a regular movement with some values added to programming algorithms. Various techniques implemented yet to the algorithms, like entering the degree values of each servo. However, to simplify the implementation of the algorithms, need some equations. This paper offered a hexapod control system based on Arduino that using Denavit-Hartenberg parameters to produce the equations. Various experiments have performed. Based on the experiments the offered system able to simplify the programming algorithms

    Experimental Study for Optimizing Pedestrian Flows at Bottlenecks of Subway Stations

    Get PDF
    In subway stations, bottlenecks are the narrowed areas that reduce pedestrian flows in channels. Because pedestrians at bottlenecks are forced to dense together, bottlenecks decrease flow efficiency and pedestrians’ transfer comfort and may trigger serious crowd disasters such as trampling. This study used pedestrian experiments to investigate the methods of optimizing pedestrian traffic at bottlenecks of subway stations. Three optimization measures were proposed and evaluated by analyzing the characteristics of pedestrian flows, including efficiency, smoothness, and security. In this paper, setting the rear sides of the bottleneck entrance as straight and surface funnel shapes is called straight funnel shape and surface funnel shape, respectively. Setting a column at a bottleneck is called the column obstacle. The results showed that when efficiency or security come first, a column on the left is recommended; when comfort comes first, a concave funnel is recommended; when comprehensiveness is prioritized, a column on the left is recommended. Moreover, the larger the volume, the optimization is more obvious. Although many  bottlenecks cannot be prevented when subway stations are constructed, the proposed optimization measures may help ease their adverse effects by improving facility efficiency, smoothness, and security, and by providing recommendations for designing and managing subway stations.</p

    Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma

    Get PDF
    BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant type of glioma. Integrated classification based on mRNA expression microarrays and whole–genome methylation subdivides GBM into five subtypes: Classical, Mesenchymal, Neural, Proneural-CpG island methylator phenotype (G-CIMP) and Proneural-non G-CIMP. Biomarkers that can be used to predict prognosis in each subtype have not been systematically investigated. METHODS: In the present study, we used Cox regression and risk-score analysis to construct respective prognostic microRNA (miRNA) signatures in the five intrinsic subtypes of primary glioblastoma in The Cancer Genome Atlas (TCGA) dataset. RESULTS: Patients who had high-risk scores had poor overall survival compared with patients who had low-risk scores. The prognostic miRNA signature for the Mesenchymal subtype (four risky miRNAs: miR-373, miR-296, miR-191, miR-602; one protective miRNA: miR-223) was further validated in an independent cohort containing 41 samples. CONCLUSION: We report novel diagnostic tools for deeper prognostic sub-stratification in GBM intrinsic subtypes based upon miRNA expression profiles and believe that such signature could lead to more individualized therapies to improve survival rates and provide a potential platform for future studies on gene treatment for GBM

    Fast failure recovery in MPLS networks

    No full text
    Recovery from network failures is a very important and challenging requirement for current Internet service providers. Real-time applications and other mission-critical tasks require networks to respond to network faults expeditiously in order to not degrade the required quality. In IP networks, failures are detected and handled through the convergence of network topology (topology change reflected in all routers' routing information bases). This recovery mechanism, however, has an obvious disadvantage in that it reacts to network faults very slowly, because it may take a long time for the entire network topology to converge. In this thesis, we present the design of a fast recovery mechanism in MPLS networks, implemented over the Linux platform. We investigate its performance over our testing network composed of Linux routers. Our experiments show that our recovery mechanism responds to network faults quickly, with less packet loss.Science, Faculty ofComputer Science, Department ofGraduat

    Control of Trajectory Tracking for Mobile Manipulator Robot with Kinematic Limitations and Self-Collision Avoidance

    No full text
    In this paper, we propose an optimized differential evolution algorithm based on kinematic limitations and structural complexity constraints to solve the trajectory tracking problem for a mobile manipulator robot. The traditional method mainly involves obtaining the speed of the control variable based on the Jacobian inverse or linearization of the robot&rsquo;s kinematic model, which cannot avoid the singularity position and/or self-collision phenomena. To address these problems, we directly design an optimized differential evolution algorithm to solve the trajectory planning problem for mobile manipulator robots. First, we analyze various constraints on the actual movement and describe them specifically using various equations or inequalities, including non-holonomic constraints on the mobile platform, the physical limitations of the driving motors, self-collision avoidance restriction, and smoothly traversing the singularity position. Next, we re-define the trajectory tracking of a mobile manipulator robot as an optimization problem under multiple constraints, including the trajectory tracking task and various constraints simultaneously. Then, we propose a new differential evolution (DE) algorithm by optimizing some critical operations to solve the optimization problem, such as improving the population&rsquo;s distribution, limiting the population distribution range, and adding a success index. Additionally, we design two simple trajectories and two complex trajectories to determine the performance of the optimized DE algorithm in solving the trajectory tracking problem. The results demonstrate that the optimized DE algorithm can effectively realize the high-precision trajectory tracking task of a differential wheeled mobile manipulator robot through the consideration of kinematic limitations and self-collision avoidance

    Control of Trajectory Tracking for Mobile Manipulator Robot with Kinematic Limitations and Self-Collision Avoidance

    No full text
    In this paper, we propose an optimized differential evolution algorithm based on kinematic limitations and structural complexity constraints to solve the trajectory tracking problem for a mobile manipulator robot. The traditional method mainly involves obtaining the speed of the control variable based on the Jacobian inverse or linearization of the robot’s kinematic model, which cannot avoid the singularity position and/or self-collision phenomena. To address these problems, we directly design an optimized differential evolution algorithm to solve the trajectory planning problem for mobile manipulator robots. First, we analyze various constraints on the actual movement and describe them specifically using various equations or inequalities, including non-holonomic constraints on the mobile platform, the physical limitations of the driving motors, self-collision avoidance restriction, and smoothly traversing the singularity position. Next, we re-define the trajectory tracking of a mobile manipulator robot as an optimization problem under multiple constraints, including the trajectory tracking task and various constraints simultaneously. Then, we propose a new differential evolution (DE) algorithm by optimizing some critical operations to solve the optimization problem, such as improving the population’s distribution, limiting the population distribution range, and adding a success index. Additionally, we design two simple trajectories and two complex trajectories to determine the performance of the optimized DE algorithm in solving the trajectory tracking problem. The results demonstrate that the optimized DE algorithm can effectively realize the high-precision trajectory tracking task of a differential wheeled mobile manipulator robot through the consideration of kinematic limitations and self-collision avoidance

    An Optimized Probabilistic Roadmap Algorithm for Path Planning of Mobile Robots in Complex Environments with Narrow Channels

    No full text
    In this paper, we propose a new path planning algorithm based on the probabilistic roadmaps method (PRM), in order to effectively solve the autonomous path planning of mobile robots in complex environments with multiple narrow channels. The improved PRM algorithm mainly improves the density and distribution of sampling points in the narrow channel, through a combination of the learning process of the PRM algorithm and the APF algorithm. We also shortened the required time and path length by optimizing the query process. The first key technology to improve the PRM algorithm involves optimizing the number and distribution of free points and collision-free lines in the free workspace. To ensure full visibility of the narrow channel, we extend the obstacles through the diagonal distance of the mobile robot while ignoring the safety distance. Considering the safety distance during movement, we re-classify the all sampling points obtained by the quasi-random sampling principle into three categories: free points, obstacle points, and adjacent points. Next, we transform obstacle points into the free points of the narrow channel by combining the APF algorithm and the characteristics of the narrow channel, increasing the density of sampling points in the narrow space. Then, we include potential energy judgment into the construction process of collision-free lines shortening the required time and reduce collisions with obstacles. Optimizing the query process of the PRM algorithm is the second key technology. To reduce the required time in the query process, we adapt the bidirectional A* algorithm to query these local paths and obtain an effective path to the target point. We also combine the path pruning technology with the potential energy function to obtain a short path without collisions. Finally, the experimental results demonstrate that the new PRM path planning technology can improve the density of free points in narrow spaces and achieve an optimized, collision-free path in complex environments with multiple narrow channels

    Monocular-Vision-Based Autonomous Hovering for a Miniature Flying Ball

    No full text
    This paper presents a method for detecting and controlling the autonomous hovering of a miniature flying ball (MFB) based on monocular vision. A camera is employed to estimate the three-dimensional position of the vehicle relative to the ground without auxiliary sensors, such as inertial measurement units (IMUs). An image of the ground captured by the camera mounted directly under the miniature flying ball is set as a reference. The position variations between the subsequent frames and the reference image are calculated by comparing their correspondence points. The Kalman filter is used to predict the position of the miniature flying ball to handle situations, such as a lost or wrong frame. Finally, a PID controller is designed, and the performance of the entire system is tested experimentally. The results show that the proposed method can keep the aircraft in a stable hover
    corecore